首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3043篇
  免费   329篇
  国内免费   168篇
化学   252篇
晶体学   20篇
力学   379篇
综合类   21篇
数学   2094篇
物理学   774篇
  2024年   3篇
  2023年   50篇
  2022年   37篇
  2021年   57篇
  2020年   93篇
  2019年   97篇
  2018年   94篇
  2017年   104篇
  2016年   134篇
  2015年   80篇
  2014年   169篇
  2013年   272篇
  2012年   119篇
  2011年   142篇
  2010年   114篇
  2009年   177篇
  2008年   222篇
  2007年   171篇
  2006年   197篇
  2005年   152篇
  2004年   151篇
  2003年   113篇
  2002年   115篇
  2001年   92篇
  2000年   93篇
  1999年   83篇
  1998年   72篇
  1997年   64篇
  1996年   57篇
  1995年   32篇
  1994年   30篇
  1993年   28篇
  1992年   31篇
  1991年   19篇
  1990年   15篇
  1989年   5篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   3篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有3540条查询结果,搜索用时 15 毫秒
101.
Runyue Li 《哲学杂志》2016,96(35):3654-3670
First-principles calculations were performed to investigate the structural properties, phase stabilities, elastic properties and thermal conductivities of MP (M = Ti, Zr, Hf) monophosphides. These monophosphides are thermodynamically and mechanically stable. Values for the bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by Voigt–Reuss–Hill approximation. The mechanical anisotropy was discussed via several anisotropy indices and three-dimensional (3D) surface constructions. The order of elastic anisotropy is ZrP > HfP > TiP. The minimum thermal conductivities of these monophosphides were investigated using Clarke’s model and Cahill’s model. The results revealed that these monophosphides are suitable for use as thermal insulating materials and that their minimum thermal conductivities are anisotropic.  相似文献   
102.
In the present paper the sensitivity V of plastic nuclear track detectors CR-39 to the space radiation, accelerated heavy ions in wide LET range and α-particles is studied. Different approaches for V evaluation are considered and compared. Main attention is given to the method that is appropriate for the measurement of short range heavy secondaries of space radiation. Finally, the experimental verification of the designed V function is carried out via simulation of the secondaries with low energy α-particles in the vicinity of the Bragg peak.  相似文献   
103.
Nanocomposites comprising flexible polymers and high dielectric constant inorganic nanoparticles are considered to be one of the promising candidates for electrostatic capacitor dielectrics.However,the effect of interfacial property on electrical ene rgy storage of dielectric polymer nanocomposites is still not clear.Herein,the role of the polarity of the interfacial region is investigated.For this purpose,three polymers with different polarity,polymethyl methacrylate(PMMA),polyglycidyl methacrylate,and polymethylsulfonyl ethyl methacrylate(PMSEMA) are attached onto BaTi03(BT) na noparticle surface via surface-initiated reversible addition-fragmentation chain transfer polymerization.It is found that the polarity of shell polymers shows an apparent effect on the dielectric and energy storage of dielectric polymer nanocomposites.For example,PMSEMA@BT(shell polymer possesses the highest polarity)increases dielectric loss and decreases the breakdown strength of the nanocomposites,leading to lower ene rgy storage capability.However,PMMA@BT(shell polymer possesses the lowest polarity) can induce higher breakdown strength of the nanocomposites.As a result,the PMMA@BT nanocomposite exhibits the highest electrical energy sto rage capability among the three nanocomposites.This re search provides new insight into the design of core-shell nanofillers for dielectric energy storage applications.  相似文献   
104.
The characterization of dielectric materials in space environment requires to understand and predict their electric behaviour, taking into account ionisation, and ageing effect (through electron or UV radiation, thermal cycling, …)For this purpose, new methods have been developed for the characterisation and qualification of space materials and satellite structure. These studies led initially to the development of dedicated facilities for the simulation of representative irradiation conditions. This work is focused on a new non-disturbing technique for the measurement of charge distribution within space irradiated polymers. This technique named PEA (Pulsed Electro-Acoustic) has been implemented in the irradiation facility for in-situ and real time measurement during irradiation and relaxation of polymer materials. Implementation and validation of this technique are presented and discussed in this paper.  相似文献   
105.
Arrays of anisotropic particles are sought after for applications in optics, electronics, and energy. Structures assembled from multiple micro‐ or nanoparticles could incorporate the distinct properties of each component to achieve functions not possible from single‐population assemblies. In mixed‐particle populations, the assembly forces may differ between the particle types, which will in turn influence the final assembled structures. Here, binary particle mixtures are studied and compared to assemblies formed from each of the component particles alone. The particles are partially etched nanowires (PENs, ≈300 nm diameter, and 3–8 μm overall length), which are formed by the silica coating and subsequent etching of striped metal nanowires, such that what remains are silica nanotubes containing segments of metal core (Au, Pt, Rh, or Pt/Au) with controllable location and number, spaced by “empty” regions that fill with water. Binary mixtures of PENs with different core metals and segment patterns are examined here to explore how the different core segment material, length, position, and number affects overall self‐assembly behavior.  相似文献   
106.
We study special regularity and decay properties of solutions to the IVP associated to the k-generalized KdV equations. In particular, for datum u 0 ∈ H 3/4+ (?) whose restriction belongs to H l ((b, ∞)) for some l ∈ ?+ and b ∈ ? we prove that the restriction of the corresponding solution u(·, t) belongs to H l ((β, ∞)) for any β ∈ ? and any t ∈ (0, T). Thus, this type of regularity propagates with infinite speed to its left as time evolves.  相似文献   
107.
Elastic organic crystals have attracted considerable attention as next-generation flexible smart materials. However, the detailed information on both molecular packing change and macroscopic mechanical crystal deformations upon applied stress is still insufficient. Herein, we report that fluorescent single crystals of 9,10-dibromoanthracene are elastically bendable and stretchable, which allows a detailed investigation of the deformation behavior. We clearly observed a Poisson effect for the crystal, where the short axes (b and c-axes) of the crystal are contracted upon elongation along the long axis (a-axis). Moreover, we found that the Poisson's ratios along the b-axis and c-axis are largely different. Theoretical molecular simulation suggests that the tilting motion of the anthracene may be responsible for the large deformation along the c-axis. Spatially resolved photoluminescence (PL) measurement of the bent elastic crystals reveals that the PL spectra at the outer (elongated), central (neutral), and inner (contracted) sides are different from each other.  相似文献   
108.
Hydrogels enable a variety of applications due to their dynamic networks, structural flexibility, and tailorable functionality. However, their mechanical performances are limited, specifically in the context of cellular mechanobiology. It is also difficult to fabricate robust gel networks with a long-term durability. Thus, a new generation of soft materials showing outstanding mechanical behavior for mechanobiology applications is highly desirable. We combined synthetic biology and supramolecular assembly to prepare elastin-like protein (ELP) organogel fibers with extraordinary mechanical properties. The mechanical performance and stability of the assembled anisotropic proteins are superior to other organo-/hydrogel systems. Bone-derived mesenchymal cells were introduced into the organofiber system for stem-cell lineage differentiation. This approach demonstrates the feasibility of mechanically strong and anisotropic organonetworks for mechanobiology applications and holds great potential for tissue-regeneration translations.  相似文献   
109.
Organic semiconductors (OSCs) materials are currently under intense investigation because of their potential applications such as organic field-effect transistors, organic photovoltaic devices, and organic light-emitting diodes. Inspired by the selenization strategy can promote anisotropic charge carrier migration, and selenium-containing compounds have been proved to be promising materials as OSCs both for hole and electron transfer. Herein, we now explore the anisotropic transport properties of the series of selenium-containing compounds. For the compound containing Se Se bond, the Se Se bond will break when attaching an electron, thus those compounds cannot act as n-type OSCs. About the different isomer compounds with conjugated structure, the charge transfer will be affected by the stacking of the conjugated structures. The analysis of chemical structure and charge transfer property indicates that Se-containing materials are promising high-performance OSCs and might be used as p-type, n-type, or ambipolar OSCs. Furthermore, the symmetry of the selenium-containing OSCs will affect the type of OSCs. In addition, there is no direct relationship between the R groups with their performance, whether it or not as p-type OSCs or n-types. This work demonstrates the relationship between the optoelectronic function and structure of selenium-containing OSCs materials and hence paves the way to design and improve optoelectronic function of OSCs materials.  相似文献   
110.
Elastic organic crystals have attracted considerable attention as next‐generation flexible smart materials. However, the detailed information on both molecular packing change and macroscopic mechanical crystal deformations upon applied stress is still insufficient. Herein, we report that fluorescent single crystals of 9,10‐dibromoanthracene are elastically bendable and stretchable, which allows a detailed investigation of the deformation behavior. We clearly observed a Poisson effect for the crystal, where the short axes (b and c‐axes) of the crystal are contracted upon elongation along the long axis (a‐axis). Moreover, we found that the Poisson's ratios along the b‐axis and c‐axis are largely different. Theoretical molecular simulation suggests that the tilting motion of the anthracene may be responsible for the large deformation along the c‐axis. Spatially resolved photoluminescence (PL) measurement of the bent elastic crystals reveals that the PL spectra at the outer (elongated), central (neutral), and inner (contracted) sides are different from each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号